Extended Tandem Reactions of 2H-1,2,3-Triazole \boldsymbol{N}-Oxides with Dialkyl
 Acetylenedicarboxylates and \boldsymbol{N}-Phenylmaleimide: Substituted Monocyclic 2,5-Dihydro-1,2,3-triazines and New Tetrahydrofuro[2,3-d]-1,2,3-triazoles. Azolium 1,3-Dipoles Part 5.t

Richard N. Butler,* Desmond Cunningham, Elizabeth G. Marren and Patrick McArdle Chemistry Department, University College, Galway, Ireland

Abstract

The reaction of substituted 1,2,3-triazole 1 -oxides with dialkyl acetylenedicarboxylate dipolarophiles gave a new route to monocyclic 1,2,3-triazine derivatives via a multi-step sequence of cycloaddition, sigmatropic rearrangements, and ring expansion. With N-phenylmaleimide as dipolarophile, derivatives of a new tetrahydrofuro[2,3-d]-1,2,3-triazole system were formed. Mechanisms are discussed. An X-ray crystal structure of 2-(p-bromophenyl)-5-methoxalyl-5-methoxycarbonyl-4,6-dimethyl-2,5-dihydro-1,2,3-triazine is reported.

Recently we have described ${ }^{1-3}$ the wide synthetic scope for $1,2,3$-triazolium imides 1 as 1,3 -dipoles in reactions with 2π systems. Although two of the four π-electrons of the 1,3 -dipole system form part of the aromatic triazole ring, rapid rearrangements after the initial cycloaddition result in the retention of the $1,2,3$-triazole moiety so that the $\mathrm{N}-\mathrm{N}-\mathrm{N}$ chain can be carried intact through a range of steps, thus adding an important synthetic dimension which provides routes to monocyclic hetero-1,2,3-triazines, ${ }^{1-3}$ such as oxatriazines, thiatriazines and tetrazines. The related oxygen analogues, the $1,2,3$-triazolium 1-oxides 2 have not yet been explored as 1,3-dipoles for synthesis. Herein, ${ }^{4}$ we examine these to allow a comparison with the imides already reported. ${ }^{1-3}$ The oxides 2 were less versatile and only exhibited cycloadditions with strongly π-deficient dipolarophiles containing two carbonyl groups conjugated to the 2π-system. Thus, under normal conditions in toluene as solvent, no reactions were observed between the N-oxides 2 and dipolarophiles such as acrylonitrile, ethyl acrylate, methyl methacrylate, fumaronitrile and others. Interesting new reactions ${ }^{4}$ were observed with dimethyl acetylenedicarboxylate (DMAD), diethyl acetylenedicarboxylate (DEAD) and N phenylmaleimide (PMA) all of which contain comparable low lying LUMOs. ${ }^{5}$ These reactions gave a new ${ }^{4}$ effective route to high yields of derivatives of the monocyclic 1,2,3-triazine system, the rarest ${ }^{6}$ of the triazine class. Most of the known 1,2,3triazine compounds are fused benzo-derivatives, and reactions which give monocyclic 1,2,3-triazines are of particular interest. ${ }^{6-10}$ Derivatives of the new furo [2,3-d]-1,2,3-triazole ring system were formed from the reactions with PMA. Both reactions were related and followed an extended tandem sequence similar to that observed ${ }^{1-3}$ for $1,2,3$-triazolium-1imide, 1,3 -dipoles; namely, a cycloaddition, a number of sigmatropic rearrangements and finally a ring expansion. The generality of this new tandem reaction is now expanded to include 1,2,3-triazolium oxide 1,3-dipoles also.

Results and Discussion

When a range of triazolium oxide compounds 2 were heated under reflux in toluene with DMAD as dipolarophile, high yields of the substituted 1,2,3-triazines 6 were obtained (Scheme 1) (Table 1). The reactions also occurred in p-xylene and benzene as solvent but the yields were lower due to decomposition (Table 1, Nos. 2, 3, 4). Polar solvents inhibited the process and no reaction was observed in solvents such as

= NAr
$6 R=R^{\prime}=M e$
$2 X=0$
$7 \mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{Me}$
$X=O, R=M e$
$5 \mathrm{X}=\mathrm{O}, \mathrm{RR}=\left[\mathrm{CH}_{2}\right]_{4}$
$8 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Et}$
$9 \mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{Et}$

Scheme 1 Reagents: i, DMAD; ii, DEAD; iii, PMA. Ar $=\mathbf{a}, \mathrm{Ph} ; \mathbf{b}$, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}-p ; \mathrm{c}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p$. (Some ${ }^{13} \mathrm{C}$ NMR shift ranges are shown).
acetone and ethyl methyl ketone. The reactions also occurred readily with DEAD as dipolarophile and gave the compounds 8 and 9 (Table 1). By analogy with reactions which gave rise to 1,2,3-triazine systems similar to $\mathbf{6}$ but containing O, N and S atoms in place of the sp^{3} carbon ${ }^{1-3}$ we suggest that the reaction occurs through the sequence shown in Scheme 2. This involves an initial 1,3-dipolar cycloaddition and sigmatropic rearrangement to give the fused furano-(1,2,3)-triazole system 13 via 12 (Scheme 2). The driving force for the rearrangement is the replacement of the weak $\mathrm{N}-\mathrm{O}$ bond by the stronger $\mathrm{C}-\mathrm{O}$ bond in the fused furan ring and the conversion of substituents from endo- to exo-orientations. A key feature of structure 13 is the π bond at the 2,3 -site of the furan moiety. This allows for a further
\dagger Part 4 is ref. 2.

Table 1. Substrates and products

No.	Substrate			Dipolarophile	Product		
	Cpd	R	$\begin{aligned} & \text { M.p. } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$		Cpd	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%) ${ }^{g}$ Toluene; p-xylene
1	3b	Me	107-108 ${ }^{\text {a }}$	DMAD	6b	88-89 ${ }^{\text {d }}$	46;
2	3c	Me	238-239 ${ }^{\text {b }}$	DMAD	6 c	143-144 ${ }^{\text {a }}$	79; $49^{\text { }}$
3	4 a	Ph	168-169 ${ }^{\text {b }}$	DMAD	7a	158-159a	73; 17.5
4	4 c	Ph	207-208 ${ }^{\text {b }}$	DMAD	7c	174-175 ${ }^{\text {a }}$	57.5; 46
5	3b	Me	107-108	DEAD	8 b	e	41;
6	3c	Me	238-239	DEAD	8 c	89-91 ${ }^{\text {a }}$	38;
7	4 a	Ph	168-169	DEAD	99	129-130 ${ }^{\text {c }}$	34;
8	4 c	Ph	207-208	DEAD	9 c	126-127 ${ }^{\text {f }}$	47;
9	3c	Me	238-239	PMA	10c	214-215 ${ }^{\text {c }}$; 75
10	5c	$\left[\mathrm{CH}_{2}\right]_{4}$	191-192 ${ }^{\text {c }}$	PMA	11c	245-246 ${ }^{\text {b }}$; 80.5
11	5a	$\left[\mathrm{CH}_{2}\right]_{4}$	93-94 ${ }^{\text {a }}$	DMAD	16	oil ${ }^{\text {e }}$	10-15 ;

${ }^{a}$ From $\mathrm{Et}_{2} \mathrm{O} .{ }^{b}$ From $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{c}$ From EtOAc. ${ }^{d}$ From $\mathrm{EtOH} .{ }^{e}$ Isolated as an oily residue which did not solidify. ${ }^{f}$ From aq. ethanol. ${ }^{g}$ Recovered starting material was the only other compound encountered. ${ }^{h}$ Yield in benzene, $41 \%{ }^{i}$ Precise yield could not be determined. Recovered starting N oxide, 85%.

Scheme 2 Reagent: i, DMAD
thermal sigmatropic rearrangement to give the strained intermediate 14 which relieves strain by a disrotatory outward ring expansion to the triazine products 6 (Scheme 2).* If the 2,3-π-bond in compounds 13 were absent the sequence should then stop at that point. This was indeed observed with PMA as dipolarophile, when the products were the stable compounds 10 and 11 (Scheme 1) (Table 1). These compounds are derivatives of a new fused furo [2,3-d]-1,2,3-triazole system and compound 11 also represents a new oxa-aza-propellane ring system. Further support for the intermediate 14 was obtained when strain was introduced by linking of the bridgehead substituents.

Thus, when RR was a chain of four methylene groups as in intermediate 15 from substrate 5a (Scheme 3), the disrotatory outward ring expansion was inhibited and a 1,2 -shift occurred to give the spiro-product 16 (Scheme 3). This type of 1,2 -shift is a known feature of strained substituted cyclopropane systems. ${ }^{2,11}$ Compound 16 was isolated with difficulty in low yield, the reaction being particularly sluggish. Its formaton, however, coupled with similar ring-contracting 1,2 -shifts observed with nitrogen analogues ${ }^{2}$ of these reactions is significant and supports the proposed mechanism. An alternative mechanism which we considered earlier, ${ }^{4}$ involving oxygen transfer to the alkyne, thus generating an acyl carbene, is now disfavoured since we could find no support for it nor could we model the final steps with separately generated carbenes in the presence of triazoles.

Structure of Products.-The structure of the products was established by IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy (Schemes 1-3). The compounds showed all of the expected signals. For the dihydrotriazines 6-9 the 4 - and 6-carbons (sp^{2}) gave signals at δ_{c} 132-135, while the 5 -carbon (sp^{3}) appeared at $\delta_{\mathrm{c}} 61.4-61.7$ in the carbon NMR spectrum. The X-ray crystal structure of compound $\mathbf{6 b}$ is shown in Fig. 1. Of interest in the structure of the dihydrotriazine ring is the planar symmetrical nature of the atoms comprising the $\mathrm{C}-\mathrm{N}-\mathrm{N}-\mathrm{N}-\mathrm{C}$ system in which the

* Following comments from a referee, we acknowledge that another possible precursory intermediate to the triazines 6 could be a dipolar species \mathbf{A}. However, for a number of reasons we favour the sigmatropic

A
route of Scheme 2 ; (i) the triazine synthesis is a general reaction (ref. 1-3) in which $\mathrm{C}-5$ has been replaced by S, O and NR^{\prime} and an intermediate of type A, particularly with S^{-}replacing the carbanion site, is unlikely; (ii) the reactions occur readily in non-polar solvents such as benzene in all cases and also in cases where precursory products analogous to 13 have been isolated and separately heated; (iii) the reactions described herein were carried out using a 3-5 molar excess of DMAD (Experimental section). Owing to stabilisation by charge delocalisation in A, there should be time for a second molecule of DMAD to be trapped. In all cases only one mole of DMAD was found to cyclo add.

15

$17 \mathrm{X}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-\mathrm{p}, \mathrm{Y}=\mathrm{NO}_{2}$

Scheme $3{ }^{13} \mathrm{C}$ NMR shifts are shown

Fig. 1 ORTEP drawing of compound 6b with H -atoms omitted for clarity
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{N}(3)$ and $\mathrm{C}-\mathrm{N}-\mathrm{N}$ bond angles of 121° and 116°, respectively, contrast with the buckled saturated $\mathrm{C}-\mathrm{C}-\mathrm{C}$ region with almost normal $\mathrm{C}-\mathrm{C}$ bond lengths and tetrahedral bond angles. The saturated carbon of the 2,5-dihydro-1,2,3-triazine compounds showed interesting reactivity involving both ready hydrolysis of the methoxalyl substituent and rapid hydrogendeuterium exchange at this site (Scheme 4). Thus, simple heating of compounds 6-9 in aqueous ethanol gave the range of compounds 18-21 in high yield (Table 2) (Scheme 4). In these the NMR signals of the alkoxalyl moiety were absent and were replaced by that of a CH group which appeared at $\delta_{\mathbf{H}} 3.92$ (± 0.1) for compounds 19 and 21. These signals and the related

Scheme 4 Reagents: i, EtOH-water ($1: 1 \mathrm{v} / \mathrm{v}$); ii, MeOD- $\mathrm{D}_{2} \mathrm{O}$ ($1: 1 \mathrm{v} / \mathrm{v}$)
carbon signals (Scheme 4) were easily identified by deuterium exchange, when it was found that the $\mathrm{HC}(5)$-group readily underwent hydrogen-deuterium exchange on treatment with deuteriomethanol and $\mathrm{D}_{2} \mathrm{O}$ (Scheme 4). This acidity of $5-\mathrm{H}$ of the 2,5 -dihydro-1,2,3-triazine ring has interesting synthetic potential which will be explored later. Compound 16 was characterised by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Scheme 3). The chemical shifts of the triazaspiro[4.4]nonane moiety were known from nitrogen analogues such as compound 17 on which we have reported an X-ray crystal structure, ${ }^{2}$ and the methoxalyl group signals were available from a comparison of the carbon NMR spectra of compounds 6a and 18a. The structures of the new furo [2,3-d $]$-1,2,3-triazole derivative 10 and the heteropropellane 11 were confirmed from microanalyses, and IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra, where all of the expected signals were observed. Particularly significant are the bridgehead carbon signals at $\delta_{c} 78-81$ and 108-111.5. We have previously shown ${ }^{3}$ from a combination of X-ray crystallography and ${ }^{13} \mathrm{C}$ NMR spectroscopy that these tertiary carbon signals are reliable indicators for structures of type 10 and 11 from cycloadditions of triazolium imide 1,3-dipoles.

Experimental

M.p.s were measured with an Electrothermal apparatus and are uncorrected. IR spectra were measured for KBr discs, and Nujol mulls with a Perkin-Elmer 983G spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured with a JEOL JNM-GX 270 FT NMR spectrometer with tetramethylsilane as internal reference. All ${ }^{13} \mathrm{C}$ assignments were confirmed by off-resonance and selective-decoupling techniques. Elemental analyses were performed with a Perkin-Elmer model 240 CHN Analyser. The triazole N-oxide substrates (Table 1, Scheme 1) were prepared from known mono-oxime derivatives of 1,2-dicarbonyl compounds ${ }^{12,13}$ which were converted into mono-axime monohydrazone derivatives ${ }^{14}$ and these were in turn oxidised to the triazole N-oxides (Table 1) by literature procedures. The following is a typical example: A solution of α-benzil monooxime ${ }^{12}(2.0 \mathrm{~g}, 8.89 \mathrm{mmol})$ in 95% ethanol $\left(10 \mathrm{~cm}^{3}\right)$ at $50-55^{\circ} \mathrm{C}$ was treated with a warmed glacial acetic acid solution ($20 \mathrm{~cm}^{3}$) of p-nitrophenylhydrazine ($1.36 \mathrm{~g}, 8.89 \mathrm{mmol}$) and the mixture was stirred at $80-85^{\circ} \mathrm{C}$ for 2 h , during which benzil mono-oxime mono-(p-nitrophenyl)hydrazone separated out (67%); m.p. 212$214{ }^{\circ} \mathrm{C}$ (from MeOH) (Found: $\mathrm{C}, 66.45 ; \mathbf{H}, 4.5 ; \mathbf{N}, 15.5$. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 66.7 ; \mathrm{H}, 4.45 ; \mathrm{N}, 15.55 \%$). A solution of this compound ($1 \mathrm{~g}, 2.78 \mathrm{mmol}$) in dichloromethane $\left(50 \mathrm{~cm}^{3}\right.$) was treated with lead tetra-acetate ($1.36 \mathrm{~g} ; 3.07 \mathrm{mmol}$) [yellow mercury(II) oxide or lead dioxide may also be used] and the mixture was stirred under reflux for 30 min , cooled, filtered through a Celite bed to remove lead salts and evaporated under reduced pressure till crystals of 2-(p-nitrophenyl)-4,5-diphenyl$2 \mathrm{H}-1,2,3$-triazole 1 -oxide (4c) separated out (73%), m.p. 207$208^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: $\mathrm{C}, 67.1 ; \mathrm{H}, 4.0 ; \mathrm{N}, 15.4$. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, 67.05; H, 3.9; $\mathrm{N}, 15.65 \%$); $v_{\text {max }}{ }^{-}$

Table 2. Hydrolysis products of compounds 6-9

Compound	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	$5-\mathrm{H}^{\text {b }}$	
			$\delta_{\text {H }}$	$\delta_{\text {c }}$
18c	133-135	96	3.93	44.25
18b	a	23	3.92	43.44
19c	201-202	93	5.33	38.67
19a	195-196	69	5.33	38.42
20c	129-131	44	3.90	44.62
20 b	106-107	82	5.0	50.75
21c	187-188	85	5.32	39.14
21a	99-101	69	5.28	38.90

(mull) $/ \mathrm{cm}^{-1} 1148\left(=\mathrm{N}^{+} \mathrm{O}^{-}\right)$and $1607\left(\mathrm{C}=\mathrm{N}^{+}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.35-7.40(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph})$ and $8.28(\mathrm{~d})$ and $8.40(\mathrm{~d})\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$, $\left.J_{\mathrm{AB}^{\prime}} 6.97 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 122.55,125.32,125.49$, $128.56,129.48,129.73,130.05,130.60,130.68,140.46,145.20$ and 146.66. All of the triazole N-oxides (Table 1) were similarly prepared. All compounds reported gave satisfactory CHN microanalyses and IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra.*

Cycloadditions.-The following are typical examples: (i) (No. 2, Table 1). A solution of 4,5-dimethyl-2-(p-nitrophenyl)-1,2,3triazole 1 -oxide 3 c ($300 \mathrm{mg}, 1.3 \mathrm{mmol}$) in toluene ($10 \mathrm{~cm}^{3}$) was treated with DMAD ($0.79 \mathrm{~cm}^{3}, 6.4 \mathrm{mmol}$), stirred under reflux for 48 h , and cooled whereupon 5-methoxalyl-5-methoxy-carbonyl-4,6-dimethyl-2-(p-nitrophenyl)-2,5-dihydro-2H-1,2,3triazine 6 c separated out. Successive crops were collected by fractional evaporation of the filtrate and treatment with diethyl ether and light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) (total yield 380 mg , 79.2%); m.p. $143-144{ }^{\circ} \mathrm{C}$ (from diethyl ether, toluene or p xylene) (Found: C, 50.65; H, 4.3; N, 14.7. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires C, $51.05 ; \mathrm{H}, 4.3 ; \mathrm{N}, 14.9 \%$); $v_{\max }$ (mull)/ $/ \mathrm{cm}^{-1} 1725$ and 1744 $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.32(6 \mathrm{H}, \mathrm{s}, 4,6$-dimethyl), $3.91(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{MeO})$ and $7.74(2 \mathrm{H}, \mathrm{d})$ and $8.19\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}^{\prime}} 9.16 \mathrm{~Hz}\right.$, $\left.\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right)\left(p\right.$-nitrophenyl); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 19.74,53.56,53.71,61.46$, $115.1,124.86,135.06,143.02,149.39,160.16,166.06$ and 180.83 . The final residue contained the recovered excess of DMAD and traces of a dark green oil.
(ii) (No. 3, Table 1). A solution of 2,4,5-triphenyl-2H-1,2,3triazole 1-oxide $4 a(500 \mathrm{mg}, 1.6 \mathrm{mmol})$ in toluene $\left(10 \mathrm{~cm}^{3}\right)$ was treated with DMAD $\left(0.98 \mathrm{~cm}^{3}, 8.0 \mathrm{mmol}\right)$ and the mixture was stirred under reflux for 28 h and then evaporated under reduced pressure. The orange-coloured residue was taken up in diethyl ether ($10 \mathrm{~cm}^{3}$) and insoluble starting compound 4 a (220 mg) was removed. Slow evaporation of the ethereal filtrate caused separation of 7a 5-methoxalyl-5-methoxycarbonyl-2,4,6-tri-phenyl-2,5-dihydro-1,2,3-triazine (total yield corrected for starting material recovered, 73.2%), m.p. $158-159^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$); $v_{\max }(\mathrm{mull}) / \mathrm{cm}^{-1} 1759$ and $1735(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.12(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeO}), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 7.13-7.68(10 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 6-\mathrm{Ph}), 7.88-$ $7.91\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{m, p}, 2-\mathrm{Ph}\right)$ and $8.05-8.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{o}, 2-\mathrm{Ph}\right)$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 51.76,52.88,60.50,115.44,122.19,123.08,126.08$, 126.83, 127.57, 127.84, 128.03, 128.77, 128.84, 132.71, 133.27, 144.53, 156.91, 166.23 and 186.29. The final residue contained recovered DMAD and traces of a dark orange oil.
(iii) (No. 6, Table 1). A solution of 4,5-dimethyl-2-(p -

[^0]Table 3. Crystal data for compound 6b

Crystal size (mm)	$0.25 \times 0.3 \times 0.33$
Formula	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{5}$
M (amu)	410.224
Monoclinic, space group	$P 2_{1} / c$
$a(\AA)$	9.996(2)
$b(\AA)$	12.851(2)
$c(\AA)$	14.139(3)
$\beta\left({ }^{\circ}\right.$)	102.5(2)
$V\left(\AA^{3}\right)$	1773.28
Z	4
$D_{c}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	1.54
$\mu\left(\mathrm{cm}^{-1}\right)$	22.51
$F(000)$	832
Radiation Mo-K	
Graphite monochromator	$\lambda=0.7093 \AA$
Diffractometer	Hilger Y290
Orienting reflections, range	12, $13<\theta<20^{\circ}$
Temperature (${ }^{\circ} \mathrm{C}$)	22
Scan method	$\omega-2 \theta$
Data collection range	$2<2 \theta<44^{\circ}$
No. unique data	1957
Total $I>3 \sigma(I)$	1432
No of parameters fitted	106
$R^{a}, R_{w}{ }^{\text {b }}$	8.28\%, 8.99%
Largest shift/esd, final cycle	<0.001
Largest positive peak (e \AA^{-3})	0.25
Largest negative peak (e \AA^{-3})	-0.18

nitrophenyl)-2H-1,2,3-triazole 1-oxide 3c ($500 \mathrm{mg}, 2.1 \mathrm{mmol}$) in toluene ($10 \mathrm{~cm}^{3}$) was treated with DEAD ($1.72 \mathrm{~cm}^{3}, 10.8 \mathrm{mmol}$), stirred under reflux for 30 h and evaporated. The green residue was taken up in diethyl ether and insoluble starting compound $3 \mathrm{c}(10.7 \%)$ was removed. On evaporation of the ethereal solution and treatment of the residue with tetrahydrofuran (THF) (5 cm^{3}) some further insoluble brown scum was removed. Evaporation of the THF solution and crystallisation of the residue from diethyl ether gave 5-ethoxalyl-5-ethoxycarbonyl-4,6-dimethyl-2-(p-nitrophenyl)-2,5-dihydro-1,2,3-triazine 8c (total yield corrected for starting material recovered, 38%), m.p., $89-91^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 53.5; H, 5.15; $\mathrm{N}, 13.9 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires $\mathrm{C}, 53.45 ; \mathrm{H}, 4.95 ; \mathrm{N}, 13.85 \%$); $\mathrm{v}_{\max }(\mathrm{mull}) / \mathrm{cm}^{-1}: 1729$ and $1750(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.35-1.40(6 \mathrm{H}$, overlapping ts, Me of both $\left.\mathrm{CO}_{2} \mathrm{Et}\right), 2.34(6 \mathrm{H}, \mathrm{s}, 4-, 6-\mathrm{Me}), 4.35-4.42(4 \mathrm{H}$, overlapping qs, CH_{2} of both $\left.\mathrm{CO}_{2} \mathrm{Et}\right)$ and $7.74(2 \mathrm{H}, \mathrm{d})$ and $8.18\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}\right.$ $8.61 \mathrm{~Hz})\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$ of $\left.p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.85,13.90,19.8$, 61.6, 63.2, 63.45, 115.1, 124.9, 135.35, 143.0, 149.5, 159.9, 165.6 and 181.3. The final residue contained an intractable orange gum.
(iv) (No. 10, Table 1). A solution of 2-(p-nitrophenyl)-4,6,7,8-tetrahydro-2 H -benzo-1,2,3-triazole 1 -oxide $\mathbf{5 c}(1.0 \mathrm{~g}, 3.85$ mmol) in p-xylene ($30.0 \mathrm{~cm}^{3}$) was treated with PMA (1.33 g , 7.69 mmol) and the mixture was stirred under reflux for 40 h during which time the product 11c began to separate out. Treatment of the filtrate of the early crop with diethyl ether and fractional evaporation gave 14-(p-nitrophenyl)-3,5-dioxo-4-phenyl-7-oxa-4,13,14,15-tetraazatetracyclo-[6.4:3.0 $\left.{ }^{1,8} .0^{2,6}\right]$ -pentadec-13-en-14-ium-15-ide 11c (80.5%), m.p. ${ }^{245-246}{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, $61.25 ; \mathrm{H}, 4.6 ; \mathrm{N}, 15.8 . \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $\mathrm{C}, 61.0 ; \mathrm{H}, 4.4 ; \mathrm{N}, 16.15 \%)$; $v_{\max }($ mull $) 1713 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 0.77-2.79\left(8 \mathrm{H}, \mathrm{m},\left[\mathrm{CH}_{2}\right]_{4}\right), 4.03(\mathrm{~d}, J, 7.7 \mathrm{~Hz}, 2-$ $\mathrm{H}), 4.97(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}), 7.29-7.59(5 \mathrm{H}, \mathrm{m}, \mathrm{NPh}), 7.39\left(2 \mathrm{H}, \mathrm{d}, \mathrm{AA}^{\prime}\right.$, H_{o} of p-nitrophenyl) and $8.44\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} .9 .16 \mathrm{~Hz}, \mathrm{BB}^{\prime}, \mathrm{H}_{m}\right.$ of p nitrophenyl); $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 19.0,20.6,29.05,30.8,52.4,75.5$, $78.9,108.5,124.1,124.85,126.75,128.9,129.3,131.7$ and 173.95.

Hydrolyses (Table 2).-Typical examples: (a) A solution of

Table 4. Fractional atomic co-ordinates for compound 6b

Atom	x	y	z
$\mathrm{Br}(1)$	$0.94173(14)$	$0.24463(9)$	$0.39596(11)$
$\mathrm{O}(1)$	$0.7187(8)$	$-0.3711(7)$	$0.4833(6)$
$\mathrm{O}(2)$	$0.8742(9)$	$-0.4158(6)$	$0.7167(6)$
$\mathrm{O}(3)$	$0.8629(8)$	$-0.5160(6)$	$0.5871(6)$
$\mathrm{O}(4)$	$0.5576(8)$	$-0.4830(6)$	$0.6558(6)$
$\mathrm{O}(5)$	$0.4310(7)$	$-0.3527(6)$	$0.6876(5)$
$\mathrm{N}(1)$	$0.7194(8)$	$-0.1458(6)$	$0.6519(5)$
$\mathrm{N}(2)$	$0.6860(8)$	$-0.1285(6)$	$0.5537(5)$
$\mathrm{N}(3)$	$0.5672(8)$	$-0.1661(6)$	$0.4980(5)$
$\mathrm{C}(1)$	$0.8570(10)$	$0.1307(8)$	$0.4479(7)$
$\mathrm{C}(2)$	$0.9097(11)$	$0.1002(8)$	$0.5417(8)$
$\mathrm{C}(3)$	$0.8522(10)$	$0.0132(8)$	$0.5776(8)$
$\mathrm{C}(4)$	$0.7398(10)$	$-0.0361(7)$	$0.5195(7)$
$\mathrm{C}(5)$	$0.6861(10)$	$-0.0010(8)$	$0.4266(7)$
$\mathrm{C}(6)$	$0.7460(11)$	$0.0856(8)$	$0.3914(8)$
$\mathrm{C}(7)$	$0.6772(9)$	$-0.2306(7)$	$0.6805(7)$
$\mathrm{C}(8)$	$0.6105(10)$	$-0.3127(7)$	$0.6071(7)$
$\mathrm{C}(9)$	$0.5230(10)$	$-0.2535(7)$	$0.5262(7)$
$\mathrm{C}(10)$	$0.3913(11)$	$-0.2957(9)$	$0.4696(8)$
$\mathrm{C}(11)$	$0.6969(11)$	$-0.2459(8)$	$0.7882(7)$
$\mathrm{C}(12)$	$0.7169(10)$	$-0.3737(7)$	$0.5697(7)$
$\mathrm{C}(13)$	$0.8244(10)$	$-0.4376(8)$	$0.6326(8)$
$\mathrm{C}(14)$	$0.9696(14)$	$-0.5820(11)$	$0.6415(10)$
$\mathrm{C}(15)$	$0.5300(11)$	$-0.3924(8)$	$0.6532(7)$
$\mathrm{C}(16)$	$0.3441(12)$	$-0.4243(9)$	$0.7260(9)$

Table 5. Bond lengths (\AA)

$\mathrm{Br}(1)-\mathrm{C}(1)$	$1.92(1)$	$\mathrm{O}(1)-\mathrm{C}(12)$	$1.23(1)$
$\mathrm{O}(2)-\mathrm{C}(13)$	$1.22(1)$	$\mathrm{O}(3)-\mathrm{C}(13)$	$1.30(1)$
$\mathrm{O}(3)-\mathrm{C}(14)$	$1.45(1)$	$\mathrm{O}(4)-\mathrm{C}(15)$	$1.20(1)$
$\mathrm{O}(5)-\mathrm{C}(15)$	$1.30(1)$	$\mathrm{O}(5)-\mathrm{C}(16)$	$1.45(1)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.37(1)$	$\mathrm{N}(1)-\mathrm{C}(7)$	$1.27(1)$
$\mathrm{N}(2)-\mathrm{N}(3)$	$1.36(1)$	$\mathrm{N}(2)-\mathrm{C}(4)$	$1.43(1)$
$\mathrm{N}(3)-\mathrm{C}(9)$	$1.30(1)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.37(1)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.35(1)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.40(1)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.39(1)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.38(1)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.41(1)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.53(1)$
$\mathrm{C}(7)-\mathrm{C}(11)$	$1.51(1)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.49(1)$
$\mathrm{C}(8)-\mathrm{C}(12)$	$1.51(1)$	$\mathrm{C}(8)-\mathrm{C}(15)$	$1.53(1)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.49(1)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.49(1)$

compound $6 \mathrm{c}(0.3 \mathrm{~g})$ in aqueous ethanol $(1: 1 \mathrm{v} / \mathrm{v})\left(20.0 \mathrm{~cm}^{3}\right)$ was heated and stirred for 30 min , and then cooled to give crystals of 5-methoxycarbonyl-4,6-dimethyl-2-(p-nitrophenyl)-2,5-dihydro-$1,2,3$-triazine 18 c , m.p. $133-135^{\circ} \mathrm{C}$ (from EtOH) (96%) (Found: C, 54.15; H, 4.95; N, 19.0. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, $53.8 ; \mathrm{H}, 4.8 ; \mathrm{N}, 19.3 \%$); $v_{\max }$ (mull) $1723 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.23\left(6 \mathrm{H}, \mathrm{s}, 4-\mathrm{and} \mathrm{m}_{-\mathrm{Me}}\right)$, $3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $3.93(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.72\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}^{\prime}} 9.34 \mathrm{~Hz}, \mathrm{AA}^{\prime}, \mathrm{H}_{o}\right.$ of $p-$ $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) and $8.18\left(2 \mathrm{H}, \mathrm{d}, \mathrm{BB}^{\prime}, \mathrm{H}_{m}\right.$ of $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 21.9,44.25,53.15,114.4,125.05,138.75,142.5$, 150.05 and 166.5 . The 5 -deuterio-derivative of this compound (18 cc) (m.p. $125^{\circ} \mathrm{C}$) was readily obtained by heating of a sample $(0.10 \mathrm{~g})$ under reflux in a $1: 1(\mathrm{v} / \mathrm{v})$ mixture of $\mathrm{D}_{2} \mathrm{O}$ and MeOD for 4 h .
(b) A solution of compound $7 \mathrm{a}(73.3 \mathrm{mg})$ in aqueous ethanol $(1: 1 \mathrm{v} / \mathrm{v})\left(20 \mathrm{~cm}^{3}\right)$ was stirred under reflux for six days and the solvent was removed under reduced pressure to give 5-methoxy-carbonyl-2,4,6-triphenyl-2,5-dihydro-1,2,3-triazine 19a, m.p. 195-

[^1]Table 6. Bond angles (${ }^{\circ}$)

$\mathrm{C}(14)-\mathrm{O}(3)-\mathrm{C}(13)$	$117.0(9)$	$\mathrm{C}(16)-\mathrm{O}(5)-\mathrm{C}(15)$	$117.2(8)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{N}(2)$	$115.9(8)$	$\mathrm{N}(3)-\mathrm{N}(2)-\mathrm{N}(1)$	$121.1(7)$
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{N}(1)$	$116.7(7)$	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{N}(3)$	$116.3(7)$
$\mathrm{C}(9)-\mathrm{N}(3)-\mathrm{N}(2)$	$116.1(8)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Br}(1)$	$118.6(8)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Br}(1)$	$118.4(8)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$123.0(1)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$118.0(1)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$119.0(1)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$	$119.5(8)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(2)$	$119.7(9)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$120.6(9)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$119.0(1)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$119.0(1)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)$	$120.3(8)$
$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{N}(1)$	$117.1(9)$	$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{C}(8)$	$122.6(8)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$105.4(7)$	$\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{C}(7)$	$111.1(8)$
$\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{C}(9)$	$109.8(8)$	$\mathrm{C}(15)-\mathrm{C}(8)-\mathrm{C}(7)$	$111.4(8)$
$\mathrm{C}(15)-\mathrm{C}(8)-\mathrm{C}(9)$	$113.1(8)$	$\mathrm{C}(15)-\mathrm{C}(8)-\mathrm{C}(12)$	$106.1(8)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(3)$	$119.6(9)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(3)$	$118.0(9)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$122.1(9)$	$\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{O}(1)$	$120.0(9)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{O}(1)$	$116.5(9)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(8)$	$123.5(9)$
$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{O}(2)$	$124.0(1)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{O}(2)$	$123.0(1)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{O}(3)$	$112.7(9)$	$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{O}(4)$	$124.0(1)$
$\mathrm{C}(8)-\mathrm{C}(15)-\mathrm{O}(4)$	$122.0(1)$	$\mathrm{C}(8)-\mathrm{C}(15)-\mathrm{O}(5)$	$114.2(9)$

$196^{\circ} \mathrm{C}$ (from EtOH) (69%) (Found: C, 74.9 ; H, 5.4; N, 11.1. $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.8 ; \mathrm{H}, 5.15 ; \mathrm{N}, 11.4 \%$); $v_{\text {max }}$ (mull) $1742 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 5.33(1 \mathrm{H}, \mathrm{s}$, 5-H), 7.14-7.51 (10 H, m, 4- and 6-Ph), 7.96-7.99 (3 H, m, H ${ }_{m, p}$ of 2-Ph $), 8.03-8.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{o}\right.$ of $\left.2-\mathrm{Ph}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 38.4,52.25$, $116.2,123.6,126.7,128.75,128.9,129.8,133.3,134.8,145.7$ and 167.9.
X-Ray Crystal Structure.-The structure of compound 6b was solved by direct methods, MULTAN, ${ }^{15}$ and refined by fullmatrix least-squares using SHELX76. ${ }^{16}$ Data were corrected for Lorentz and polarisation effects but not for absorption. Hydrogen atoms were included in calculated positions with fixed thermal parameters. The bromine atom was refined anisotropically. The thermal parameters were terms $U_{i j}$ of exp $\left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}+\right.\right.$ $\left.\left.2 U_{13} h l a^{*} c^{*}+2 U_{23} k l b^{*} c^{*}\right)\right]$. The atomic scattering factors for non-hydrogen and hydrogen atoms and the anomalous dispersion correction factors for non-hydrogen atoms were taken from the literature. ${ }^{17-19}$ All calculations were performed on a VAX 8700 computer. The ORTEP program was used to obtain the drawings. ${ }^{20}$ Tables 3-6 present crystal data, fractional atomic co-ordinates, bond lengths and bond angles. \dagger

References

1 R. N. Butler, P. D. O'Shea, D. Cunningham and P. McArdle, J. Chem. Soc., Perkin Trans. 1, 1989, 371; R. N. Butler, A. M. Evans, P. McArdle and D. Cunningham, J. Chem. Soc., Chem. Commun., 1987, 1090; R. N. Butler, D. Cunningham, P. McArdle and G. A. O'Halloran, J. Chem. Soc., Chem. Commun., 1988, 232.
2 R. N. Butler, A. M. Evans, E. McNeela, G. A. O'Halloran, P. D. O'Shea, D. Cunningham and P. McArdle, J. Chem. Soc., Perkin Trans. 1, 1990, 2527.
3 R. N. Butler, A. M. Evans, A. M. Gillan, J. P. James, E. M. McNeela, D. Cunningham and P. McArdle, J. Chem. Soc., Perkin Trans. I, 1990, 2537.
4 Part of this work has been published in preliminary communication form: R. N. Butler, D. Cunningham, E. G. Marren and P. McArdle, J. Chem. Soc., Chem. Commun., 1987, 706.

5 T. L. Gilchrist and R. C. Storr, Organic Reactions and Orbital Symmetry, Cambridge University Press, 1979, p. 70.
6 H. Neunhoeffer, in Comprehensive Heterocyclic Chemistry, series ed. A. R. Katritzky and C. W. Rees, Pergamon, Oxford, 1984, vol. 3, vol. ed. A. J. Boulton and A. McKillop, (2.18) pp. 369-384; F. R. Benson, The High Nitrogen Compounds, Wiley-Interscience, New York, 1984, pp. 96-109, 263-280.
7 R. J. Kobylecki and A. McKillop, Adv. Heterocycl. Chem., 1976, 19, 215.

8 D. J. C. Adams, S. Bradbury, D. C. Horwell, M. Keating, C. W. Rees and R. C. Storr, Chem. Commun., 1971, 828; B. M. Adger, S. Bradbury, M. Keating, C. W. Rees, R. C. Storr and M. T. Williams, J. Chem. Soc., Perkin Trans. 1, 1975, 31.

9 A. Ohsawa, H. Arai, H. Ohnishi and H. Igeta, J. Chem. Soc., Chem. Commun., 1980, 1182; 1981, 1174.
10 H. Neunhoeffer, M. Clausen, H.-D. Vötter, H. Ore, C. Krüger and K. Agermund, Liebigs Ann. Chem., 1985, 1732.

11 R. R. Kostikov, A. F. Khlebnikov and K. A. Ogloblin, J. Org. Chem. USSR (Engl. Transl.), 1975, 11, 583.
12 A. Vogel, Textbook of Practical Organic Chemistry Including Qualitative Organic Analysis, Longman Group Ltd., London, 1978, 4th edn, pp. 811, 1113.
13 T. A. Geissman and M. J. Schlatter, J. Org. Chem., 1946, 11, 771.
14 G. J. Gainsford and A. D. Woolhouse, Aust. J. Chem., 1980, 33, 2447.

15 P. Main, S. E. Fiske, S. L. Hull, G. Germain, J. P. Declerq and M. M. Woolfson, MULTAN. A System of Computer Programs for

Crystal Structure Determination from X-Ray Diffraction Data, Universities of York (York, England) and Louvain (Louvain, Belgium), 1980.
16 G. M. Sheldrick, SHELX76. A Computer Program for Crystal Structure Determination, University of Cambridge (Cambridge, England), 1976.
17 D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A, 1968, 24, 321.

18 R. F. Stewart, E. R. Davidson and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
19 D. T. Cromer and D. J. Liberman, J. Chem. Phys., 1970, 53, 1891.
20 C. K. Johnson, ORTEP, Oak Ridge National Laboratory Report ORNL (US), 1965-3794, revised (1971).

[^0]: * Supplementary data: Microanalytical data and diagrammatic ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data have been deposited at the British Library Lending Division, as Supplementary Publication SUP 56798 (16 pp.). See Instructions for Authors, January issue, section 4.4.

[^1]: \dagger Supplementary data (section 5.6.3 of Instructions for Authors, January issue). Tables of H -atom co-ordinates and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.

